Feed aggregator

New Google Security Dashboard Manages Device Activity

Threatpost for B2B - Wed, 11/26/2014 - 14:04
Google released a new Devices and Activity Dashboard, along with a new security wizard for Google for Work accounts.

Siemens Patches WinCC Vulnerabilities Likely Being Exploited

Threatpost for B2B - Wed, 11/26/2014 - 10:04
Siemens has patched two critical vulnerabilities in the WinCC application in a number of its products; the flaws are likely being exploited, ICS-CERT and Siemens said.

Home Depot Breach Cost Company $43 Million in Third Quarter

Threatpost for B2B - Wed, 11/26/2014 - 08:18
The massive Home Depot data breach disclosed earlier this fall involved the theft of 56 million credit and debit card numbers, and now the company has revealed that the incident so far has cost it $43 million. The costs are the result of both the investigation into the data breach as well as the recovery […]

State of Play: Network Devices Facing Bulls-eye

Secure List feed for B2B - Wed, 11/26/2014 - 04:00

A long time has passed since we published our analysis of threats for home network devices. Since then, the situation has significantly changed - alas, not for the better. Back in 2011, we were concerned mainly about the security of SOHO routers, DSL modems and wifi access points. Today, we are talking about the whole Internet-of-Things, which includes every single machine, appliance or gadget that is able to communicate over the Internet.

Let's recall what kind of threats for network devices we were aware of at the end of 2011:

  • DNS poisoning, drive-by pharming and SOHO pharming: exploitation of vulnerabilities in a web interface of a router/modem to change its DNS settings in order to redirect users to malicious websites
  • UPnP & SNMP based attacks: exploitation of vulnerabilities and implementation issues in widely used protocols in order to get access to the device
  • Malicious binaries: Linux-based DDoS (Distributed Denial of Service) tools, especially customized to run on routers; router botnets, capable of conducting a wide range of attacks; worms, infecting routers and spreading through the network

And now, let's look at the year 2014 and see which of our predictions came true...

More SOHO pharming attacks

True. There have been numerous attacks utilizing a router's DNS settings to obtain users banking credentials and redirect users to malicious websites. Just to name a few of the biggest incidents:

  • January 2014: huge SOHO pharming campaign affecting a wide range of routers from several manufacturers all over the world.The attackers exploited a variety of vulnerabilities to change the DNS settings of more than 300 000 devices, mainly located in Vietnam, India and Thailand, but also in several countries in Europe, both Americas and Africa. As a result, all traffic from behind the compromised routers was redirected to the malicious servers, enabling cybercriminals to decide if users should be pointed to the original version of the website they requested, or to the phishing/malicious one.
  • February 2014: another large scale campaign using the DNS poisoning technique. This time the attack was highly targeted and the goals of the cybercriminals were strictly defined: the attack was designed to steal the banking credentials from users of five popular Polish banks. In this case the number of infected routers was about 100 and most of them were located in Poland and Russia. When users tried to log into the online banking website, they were redirected to a modified site which requested them to provide the confidential information.
  • September 2014: classical drive-by pharming attack targeting home routers in Mexico and Brazil. This attack started with malicious email, spammed to a large number of Portuguese-speaking users, in which cybercriminals tried to lure the recipient to click on the link to malicious website. The HTML script on this website was designed to try several combinations of default credentials to access the configuration of the router and change its DNS settings. If this approach failed, the script displayed a pop up, asking user to enter the router credentials manually.
Binary malware for ARM and other platforms

True. We have discovered more malware samples that are affecting MIPS routers, and – more importantly – samples developed in such a way that they might be compiled for different platforms (MIPS, ARM, Intel, PPC, SuperH, etc.) and run on different kinds of Linux-based devices. A couple of examples:

  • Aidra – an open source DDoS tool, designed to scan modems/routers and create a botnet from exploitable devices. There are currently several Aidra binaries in the wild, compiled for different platforms (MIPS, ARM, PPC, SuperH), which means that this worm has been customized to be able to infect Internet-of-Things devices.
  • Figure 1 – Aidra - open source DDoS tool

  • Darlloz – a Linux worm and bot designed for MIPS, ARM and Intel architectures, spreading through a PHP-CGI vulnerability to randomly generated IP addresses and capable of downloading and running additional code. It communicates with the malicious operator by opening a backdoor on TCP port 58455 and waiting for commands. It infected more than 30 000 devices, mainly in the US and China, and – as it was proven later – was used to install crypto-currency mining software (cpuminer), at least on Intel x86 devices.
  • Figure 2a – Darlloz worm, code compiled for ARM architecture

    Figure 2b – Darlloz worm, same code snipped, compiled for x86 architecture

  • The Moon worm – a mysterious worm, spreading through a remote authentication bypass exploit in the implementation of the HNAP protocol in Linksys E-Series routers. This malware collects information about the device and communicates with its C&C (Command and Control) servers using quotes and images from the 2009 sci-fi movie called "The Moon". The IP ranges that the worm scans, in order to exploit them, are hard-coded in the binary and include about 670 networks, most of which belong to certain DSL and cable modem ISPs in different countries.
  • Figure 3 – The Moon worm, strings related to The Moon movie

Permanent modifications of firmware

True. The story published in the German c't magazine revealed the first router malware that was trying to make persistent changes to the router firmware. The malware consisted of several Linux shell scripts that were responsible for downloading the modified version of the firmware, overwriting the original image and rebooting the router. The malicious firmware came with a modified init script, which launched a sniffing tool (dsniff) on the infected machine, capturing traffic and sending all the intercepted data to the C&C FTP server. This malware was found to be affecting not only routers but also other Linux-based embedded devices, such as Dreambox DVB receivers.

Figure 4 – Flasher, script replacing the original firmware

Figure 5 – Flasher, script running the sniffer and uploading the data to FTP server

Cross-platform and multi-platform malware

True. Malware and botnets traditionally associated with Windows machines only, now start to use routers and other Internet enabled devices for different malicious purposes:

  • The Sality virus was found to incorporate SOHO routers in its replication process, by using DNS poisoning method to redirect users to infected files. In this case, the malware used was Windows malware similar to the DNSChanger Trojan.
  • The Black Energy 2 botnet also got an IoT upgrade: it started to use additional plugins which are designed to run on Linux-based MIPS and ARM devices. These modules are capable of performing DDoS attacks, stealing passwords, scanning ports in the network and sniffing traffic. They are communicating with C&C servers and are able to execute specified shell commands and download and launch additional binaries.  We have recently published an in-depth analysis of Black Energy 2, where you can find much more details about it.
More vulnerabilities in firmware discovered and exploited

True. Several critical vulnerabilities affecting Internet-of-Things devices were discovered and reported to the vendors this year. Just to name a few:

  • Rom-0 vulnerability in ZyXEL routers, which allows an attacker to download the router's configuration file without any authentication
  • CVE-2014-2719 vulnerability in ASUS wireless routers, which allows an attacker to retrieve the router's credentials
  • 15 zero-day vulnerabilities in 10 different SOHO router models, revealed at the Defcon 22's SOHOpelessly Broken contest
  • Our colleague, David Jacoby, found interesting zero-days in the devices he uses at home.
  • We also need to remember that the Heartbleed and Shellshock vulnerabilities affect some Linux-based network devices and internet-of-Things devices as well.

But what is even more scary than the growth in discovered vulnerabilities, is the fact that certain vendors seem to implement hardcoded firmware backdoors in their products, providing cybercriminals with an easy way-in, especially to devices that no longer receive any updates.

As we can see, the security situation of the network devices didn't much improve since 2011. Most of our predictions came true: the threats are on the rise and cybercriminals widen their interest not only to home routers and modems, but to the whole Internet-of-Things. Although both the vendos and the ISPs are slowly realizing the threat and trying to make their devices more secure, there is still a lot to do. For example, one of the very serious issues is that most of the older devices are not receiving firmware updates anymore, so if there is any new attack vector discovered, users can do literally nothing to protect themselves against it, unless they decide to purchase an (often expensive) newer version of the device, that is still being supported. This issue is not easy to fix: for the vendors, it wouldn't really be cost-effective to support each of the devices they offer for a long period of time; and without the software patches, there is not much to do to secure these devices from the customer's side. Times has changed, and we need to come up with a new security model for Internet of Things, as the old one is not working properly anymore.

To learn, how to protect your home network, please read the guidelines put together by my colleague, David Jacoby.

Guidelines for securing your home

Secure List feed for B2B - Wed, 11/26/2014 - 04:00

Our homes today look more like small offices. We have tons of different devices connected to our network, everything from storage devices and network equipment to wireless network printers. The entire "home entertainment" industry is getting connected: it is very difficult to buy a TV, DVD or Blu-ray player that's does not have WIFI… the same thing goes for the gaming industry: all new gaming consoles require Internet connectivity.

I do love the fact that we are applying new technology to old concepts, and improving functionality. I personally even have my old retro computers connected to the Internet - and we are talking about old computers such as Commodore 64, Amiga 500 and Atari computers - because I love the fact of adding new functionality to old things.

And as we know, with great power comes great responsibility. But this is not something that the consumer product vendors are really adopting when adding extra functionality to their "old" products. I did some research where I looked into the devices that were connected to my own home network, and the result was extremely scary! Within minutes I was able to fully compromise some of my devices, turning them into zombie machines in botnets, bypassing all the security and accessing files on storage devices that I did not have the authority to access.

Many people still believe that these attacks are difficult, and require someone  to sit on the same network as your devices, for example on your private WIFI connection, but this is false perception. There are very easy and effective ways to compromise the network of connected devices behind your personal firewall remotely over the Internet.

My colleague, Marta Janus, also did some very interesting research where she looked into the (in)security of home modems and routers, and we both came to the same conclusion. We need to act now! This is not a futuristic problem, this problem exists now. Cybercriminals are exploiting these weaknesses right now and the industry is not doing enough about this.

This is not only a technical problem that can be resolved with a patch. Consumers in general are very bad at understanding how these network connected devices should be installed. All of these devices have different usage, and because of that also require different network configurations. We are very lazy, and without proper installation instructions we simple connect the devices to our network; and when that is done, we consider the installation complete.

What is happening is that you are sharing the same network configuration among all devices. This results, for example, in having a TV, Blu-ray player and network storage device on the same network as the laptop you use to do online banking, home finances, online shopping and maybe even work.

The vendors also need to take more responsibility when shipping consumer products. Most people don't understand that the support lifecycle of these devices is only about six months; after that there will be no more updates or support from the vendor, because they need to support the next upcoming products.

From talking to friends and family, it's clear that they have a problem realizing that this is actually a threat! People still believe that it's always "someone else" who will get infected with malicious code, or who will get their credit card details or identity stolen. Please wake up to the real world -  this is happening right here, right now! Some really good examples of these types of attacks are:

  • Customers to one of the largest ISPs in Sweden were sent vulnerable routers by the ISP, allowing attackers to remotely compromise the device though a "god-like" account with an very weak password; and all devices had the same account with the same password.
  • A large amount of money was stolen from the customers of five popular Polish banks, following an attack in which cybercriminals changed the settings of hundreds of vulnerable SOHO routers in order to redirect users to the fake banking websites.
  • Malware (Psyb0t) targeted home SOHO routers exploiting software weaknesses, but also weak passwords in the administrative interface - turning the device into a zombie in a botnet.
  • Malware (BlackEnergy2) implemented additional modules, designed to run on Internet-of-Things devices, in order to perform DDoS (Distributed Denial of Service) attacks, steal passwords and sniff network traffic.
  • Malware (Flasher) replaced the firmware on vulnerable SOHO devices with a modified system image that eavesdrops on users' network activity.

As researchers it is very easy to identify security weaknesses and flame the vendors about them, but it is a bit more challenging to come up with an effective conclusion. Together with Marta, we compiled a little list of easy tips and tricks that you should apply if you have network connected devices. It's only general tips because finding one solution that works on multiple devices is very complex; all products look and feel different and have different usages.

  1. Change default passwords on the device; attackers will try to exploit this!
  2. If possible try to update the firmware to the latest version!
  3. If you do not use the network connectivity on the device, TURN IT OFF! If you use it, or if it's necessary for the device to work, make sure that there is NO REMOTE ACCESS to the management interface of the device from the outside world.
  4. Apply strong network segmentation for your connected devices
    • Does the device require access to the INTERNET?
    • Does the device, for example a TV, require access to the same network as your personal data?
  5. Switch off unnecessary features. Contemporary IoT devices usually implement a variety of different functionalities, some of which you might not even be aware of. It's good practice, after buying each new device, to learn about all its features and disable the ones that you are not going to use. Having all the features enabled increases the potential attack surface.
  6. Read The Fascinating Manual. Every device is shipped with a manual, which documents its features and configuration settings. Also, there is usually a lot of additional documentation available online. To keep your home secure, you should always familiarize yourself with any new device that you are going to incorporate into your network and take all the recommended steps to make the device as secure as possible.
  7. Please contact the support team of the vendor if you do have questions. When buying consumer products, you also pay for support. Use it! They will offer guidance for your specific device!

Sony Pictures Dealing With Apparent Network Compromise

Threatpost for B2B - Tue, 11/25/2014 - 14:40
Sony Pictures Entertainment is still in the process of trying to recover from an apparent compromise of some of the company’s computer systems. The attack first came to light on Monday, and the extent of the incident is still emerging. The compromise appears to affect just the networks at SPE, a division of Sony. Reports […]

Adobe Releases Emergency Flash Player Patch

Threatpost for B2B - Tue, 11/25/2014 - 13:22
Adobe released an emergency out-of-band Flash Player security bulletin, revising a patch released in October with an additional CVE addressing a memory corruption vulnerability.

Brain Science and Browser Warnings

Threatpost for B2B - Tue, 11/25/2014 - 12:22
Computer users will click through browser warnings and security alerts in order to complete a task, but once they're hacked, their behaviors change, a recent BYU study learned.

Experts Question Legality of Use of Regin Malware by Intel Agencies

Threatpost for B2B - Tue, 11/25/2014 - 10:51
Though security researchers involved in uncovering the attack have remained mum on the attribution of Regin, privacy experts say that if one of the intelligence agencies is involved, there's no legal basis for the operation.

Craigslist Back Online Following DNS Hijack

Threatpost for B2B - Mon, 11/24/2014 - 17:11
The popular classified website Craigslist is back online today following a DNS attack that forced it offline for several hours Sunday evening.

Remote Code Execution in Popular Hikvision Surveillance DVR

Threatpost for B2B - Mon, 11/24/2014 - 12:48
A number Hikvision digital video recorders contain vulnerabilities that an attacker could remotely exploit in order to gain full control of those devices.

Costin Raiu on the Regin APT Malware

Threatpost for B2B - Mon, 11/24/2014 - 11:05
Denis Fisher talks with Costin Raiu of the Kaspersky Lab GReAT Team about the discovery of the Regin APT malware, the threat's targets and tactics, its ability to compromise GSM base stations and its other capabilities.

Regin Cyberespionage Platform Also Spies on GSM Networks

Threatpost for B2B - Mon, 11/24/2014 - 10:09
Kaspersky Lab researchers have learned that the Regin cyberespionage platform also targets GSM telecommunications networks.

EFF, Privacy Groups Say NIST Crypto Standards Must be Free From Backdoors

Threatpost for B2B - Mon, 11/24/2014 - 09:24
The EFF and a long list of civil and privacy groups have sent a letter to NIST, emphasizing the need for the agency to create "a process for establishing secure and resilient encryption standards, free from back doors or other known vulnerabilities."

Regin: Nation-state ownage of GSM networks

Secure List feed for B2B - Mon, 11/24/2014 - 09:00
Motto: "Beware of Regin, the master! His heart is poisoned. He would be thy bane..." "The Story of Siegfried" by James Baldwin   Introduction, history

Download our full Regin paper (PDF).

In the spring of 2012, following a Kaspersky Lab presentation on the unusual facts surrounding the Duqu malware, a security researcher contacted us and mentioned that Duqu reminded him of another high-end malware incident. Although he couldn't share a sample, the third-party researcher mentioned the "Regin" name, a malware attack that is now dreaded by many security administrators in governmental agencies around the world.

For the past two years, we've been tracking this most elusive malware across the world. From time to time, samples would appear on various multi-scanner services, but they were all unrelated to each other, cryptic in functionality and lacking context.

It's unknown exactly when the first samples of Regin were created. Some of them have timestamps dating back to 2003.

The victims of Regin fall into the following categories:

  • Telecom operators
  • Government institutions
  • Multi-national political bodies
  • Financial institutions
  • Research institutions
  • Individuals involved in advanced mathematical/cryptographical research

So far, we've observed two main objectives from the attackers:

  • Intelligence gathering
  • Facilitating other types of attacks

While in most cases, the attackers were focused on extracting sensitive information, such as e-mails and documents, we have observed cases where the attackers compromised telecom operators to enable the launch of additional sophisticated attacks. More about this in the GSM Targeting section below.

Perhaps one of the most publicly known victims of Regin is Jean Jacques Quisquater (https://en.wikipedia.org/wiki/Jean-Jacques_Quisquater), a well-known Belgian cryptographer. In February 2014, Quisquater announced he was the victim of a sophisticated cyber intrusion incident. We were able to obtain samples from the Quisquater case and confirm they belong to the Regin platform.

Another interesting victim of Regin is a computer we are calling "The Magnet of Threats". This computer belongs to a research institution and has been attacked by Turla, Mask/Careto, Regin, Itaduke, Animal Farm and some other advanced threats that do not have a public name, all co-existing happily on the same computer at some point.

Initial compromise and lateral movement

The exact method of the initial compromise remains a mystery, although several theories exist, which include man-in-the-middle attacks with browser zero-day exploits. For some of the victims, we observed tools and modules designed for lateral movement. So far, we have not encountered any exploits. The replication modules are copied to remote computers by using Windows administrative shares and then executed. Obviously, this technique requires administrative privileges inside the victim's network. In several cases, the infected machines were also Windows domain controllers. Targeting of system administrators via web-based exploits is one simple way of achieving immediate administrative access to the entire network.

The Regin platform

In short, Regin is a cyber-attack platform which the attackers deploy in the victim networks for ultimate remote control at all possible levels.

The platform is extremely modular in nature and has multiple stages.

Regin platform diagram

The first stage ("stage 1") is generally the only executable file that will appear in victim' systems. Further stages are stored either directly on the hard drive (for 64 bit systems), as NTFS Extended Attributes or registry entries. We've observed many different stage 1 modules, which sometimes have been merged with public sources to achieve a type of polymorphism, complicating the detection process.

The second stage has multiple purposes and can remove the Regin infection from the system if instructed so by the 3rd stage.

The second stage also creates a marker file that can be used to identify the infected machine. Known filenames for this marker are:

  • %SYSTEMROOT%\system32\nsreg1.dat
  • %SYSTEMROOT%\system32\bssec3.dat
  • %SYSTEMROOT%\system32\msrdc64.dat

Stage 3 exists only on 32 bit systems - on 64 bit systems, stage 2 loads the dispatcher directly, skipping the third stage.

Stage 4, the dispatcher, is perhaps the most complex single module of the entire platform. The dispatcher is the user-mode core of the framework. It is loaded directly as the third stage of the 64-bit bootstrap process or extracted and loaded from the VFS as module 50221 as the fourth stage on 32-bit systems.

The dispatcher takes care of the most complicated tasks of the Regin platform, such as providing an API to access virtual file systems, basic communications and storage functions as well as network transport sub-routines. In essence, the dispatcher is the brain that runs the entire platform.

A thorough description of all malware stages can be found in our full technical paper.

Virtual File Systems (32/64-bit)

The most interesting code from the Regin platform is stored in encrypted file storages, known as Virtual File Systems (VFSes).

During our analysis we were able to obtain 24 VFSes, from multiple victims around the world. Generally, these have random names and can be located in several places in the infected system. For a full list, including format of the Regin VFSes, see our technical paper.

Unusual modules and artifacts

With high-end APT groups such as the one behind Regin, mistakes are very rare. Nevertheless, they do happen. Some of the VFSes we analyzed contain words which appear to be the respective codenames of the modules deployed on the victim:

  • legspinv2.6 and LEGSPINv2.6
  • WILLISCHECKv2.0
  • HOPSCOTCH

Another module we found, which is a plugin type 55001.0 references another codename, which is U_STARBUCKS:

GSM Targeting

The most interesting aspect we found so far about Regin is related to an infection of a large GSM operator. One VFS encrypted entry we located had internal id 50049.2 and appears to be an activity log on a GSM Base Station Controller.

From https://en.wikipedia.org/wiki/Base_station_subsystem

According to the GSM documentation (http://www.telecomabc.com/b/bsc.html): "The Base Station Controller (BSC) is in control of and supervises a number of Base Transceiver Stations (BTS). The BSC is responsible for the allocation of radio resources to a mobile call and for the handovers that are made between base stations under his control. Other handovers are under control of the MSC."

Here's a look at the decoded Regin GSM activity log:

This log is about 70KB in size and contains hundreds of entries like the ones above. It also includes timestamps which indicate exactly when the command was executed.

The entries in the log appear to contain Ericsson OSS MML (Man-Machine Language as defined by ITU-T) commands.

Here's a list of some commands issued on the Base Station Controller, together with some of their timestamps:

2008-04-25 11:12:14: rxmop:moty=rxotrx; 2008-04-25 11:58:16: rxmsp:moty=rxotrx; 2008-04-25 14:37:05: rlcrp:cell=all; 2008-04-26 04:48:54: rxble:mo=rxocf-170,subord; 2008-04-26 06:16:22: rxtcp:MOty=RXOtg,cell=kst022a; 2008-04-26 10:06:03: IOSTP; 2008-04-27 03:31:57: rlstc:cell=pty013c,state=active; 2008-04-27 06:07:43: allip:acl=a2; 2008-04-28 06:27:55: dtstp:DIP=264rbl2; 2008-05-02 01:46:02: rlstp:cell=all,state=halted; 2008-05-08 06:12:48: rlmfc:cell=NGR035W,mbcchno=83&512&93&90&514&522,listtype=active; 2008-05-08 07:33:12: rlnri:cell=NGR058y,cellr=ngr058x; 2008-05-12 17:28:29: rrtpp:trapool=all;


Descriptions for the commands:

  • rxmop - check software version type;
  • rxmsp - list current call forwarding settings of the Mobile Station;
  • rlcrp - list off call forwarding settings for the Base Station Controller;
  • rxble - enable (unblock) call forwarding;
  • rxtcp - show the Transceiver Group of particular cell;
  • allip - show external alarm;
  • dtstp - show DIgital Path (DIP) settings (DIP is the name of the function used for supervision of the connected PCM (Pulse Code Modulation) lines);
  • rlstc - activate cell(s) in the GSM network;
  • rlstp - stop cell(s) in the GSM network;
  • rlmfc - add frequencies to the active broadcast control channel allocation list;
  • rlnri - add cell neightbour;
  • rrtpp - show radio transmission transcoder pool details;

The log seems to contain not only the executed commands but also usernames and passwords of some engineering accounts:

sed[snip]:Alla[snip]
hed[snip]:Bag[snip]
oss:New[snip]
administrator:Adm[snip]
nss1:Eric[snip]

In total, the log indicates that commands were executed on 136 different cells. Some of the cell names include "prn021a, gzn010a, wdk004, kbl027a, etc...". The command log we obtained covers a period of about one month, from April 25, 2008 through May 27, 2008. It is unknown why the commands stopped in May 2008 though; perhaps the infection was removed or the attackers achieved their objective and moved on. Another explanation is that the attackers improved or changed the malware to stop saving logs locally and that's why only some older logs were discovered.

Communication and C&C

The C&C mechanism implemented in Regin is extremely sophisticated and relies on communication drones deployed by the attackers throughout the victim networks. Most victims communicate with another machine in their own internal network, through various protocols, as specified in the config file. These include HTTP and Windows network pipes. The purpose of such a complex infrastructure is to achieve two goals: give attackers access deep into the network, potentially bypassing air gaps and restrict as much as possible the traffic to the C&C.

Here's a look at the decoded configurations:

17.3.40.101 transport 50037 0 0 y.y.y.5:80 ; transport 50051 217.y.y.yt:443 17.3.40.93 transport 50035 217.x.x.x:443 ; transport 50035 217.x.x.x:443 50.103.14.80 transport 27 203.199.89.80 ; transport 50035 194.z.z.z:8080 51.9.1.3 transport 50035 192.168.3.3:445 ; transport 50035 192.168.3.3:9322 18.159.0.1 transport 50271 DC ; transport 50271 DC


In the above table, we see configurations extracted from several victims that bridge together infected machines in what appears to be virtual networks: 17.3.40.x, 50.103.14.x, 51.9.1.x, 18.159.0.x. One of these routes reaches out to the "external" C&C server at 203.199.89.80.

The numbers right after the "transport" indicate the plugin that handles the communication. These are in our case:

  • 27 - ICMP network listener using raw sockets
  • 50035 - Winsock-based network transport
  • 50037 - Network transport over HTTP
  • 50051 - Network transport over HTTPS
  • 50271 - Network transport over SMB (named pipes)

The machines located on the border of the network act as routers, effectively connecting victims from inside the network with C&Cs on the internet.

After decoding all the configurations we've collected, we were able to identify the following external C&Cs.

C&C server IP Location Description 61.67.114.73 Taiwan, Province Of China Taichung Chwbn 202.71.144.113 India, Chetput Chennai Network Operations  (team-m.co) 203.199.89.80 India, Thane Internet Service Provider 194.183.237.145 Belgium, Brussels Perceval S.a.

One particular case includes a country in the Middle East. This case was mind-blowing so we thought it's important to present it. In this specific country, all the victims we identified communicate with each other, forming a peer-to-peer network. The P2P network includes the president's office, a research center, educational institution network and a bank.

These victims spread across the country are all interconnected to each other. One of the victims contains a translation drone which has the ability to forward the packets outside of the country, to the C&C in India.

This represents a rather interesting command-and-control mechanism, which is guaranteed to raise very little suspicions. For instance, if all commands to the president's office are sent through the bank's network, then all the malicious traffic visible for the president's office sysadmins will be only with the bank, in the same country.

Victim Statistics

Over the past two years, we collected statistics about the attacks and victims of Regin. These were aided by the fact that even after the malware is uninstalled, certain artifacts are left behind which can help identify an infected (but cleaned) system. For instance, we've seen several cases where the systems were cleaned but the "msrdc64.dat" infection marker was left behind.

So far, victims of Regin were identified in 14 countries:

  • Algeria
  • Afghanistan
  • Belgium
  • Brazil
  • Fiji
  • Germany
  • Iran
  • India
  • Indonesia
  • Kiribati
  • Malaysia
  • Pakistan
  • Russia
  • Syria

In total, we counted 27 different victims, although it should be pointed out that the definition of a victim here refers to a full entity, including their entire network. The number of unique PCs infected with Regin is of course much, much higher.

From the map above, Fiji and Kiribati are unusual, because we rarely see such advanced malware in such remote, small countries. In particular, the victim in Kiribati is most unusual. To put this into context, Kiribati is a small island in the Pacific, with a population around 100,000.

More information about the Regin victims is available through Kaspersky Intelligent Services. Contact: intelreports@kaspersky.com

Attribution

Considering the complexity and cost of Regin development, it is likely that this operation is supported by a nation-state. While attribution remains a very difficult problem when it comes to professional attackers such as those behind Regin, certain metadata extracted from the samples might still be relevant.

As this information could be easily altered by the developers, it's up to the reader to attempt to interpret this: as an intentional false flag or a non-critical indicator left by the developers.

More information about Regin is available to Kaspersky Intelligent Services' clients. Contact: intelreports@kaspersky.com

Conclusions

For more than a decade, a sophisticated group known as Regin has targeted high-profile entities around the world with an advanced malware platform. As far as we can tell, the operation is still active, although the malware may have been upgraded to more sophisticated versions. The most recent sample we've seen was from a 64-bit infection. This infection was still active in the spring of 2014.

The name Regin is apparently a reversed "In Reg", short for "In Registry", as the malware can store its modules in the registry. This name and detections first appeared in anti-malware products around March 2011.

From some points of view, the platform reminds us of another sophisticated malware: Turla. Some similarities include the use of virtual file systems and the deployment of communication drones to bridge networks together. Yet through their implementation, coding methods, plugins, hiding techniques and flexibility, Regin surpasses Turla as one of the most sophisticated attack platforms we have ever analysed.

The ability of this group to penetrate and monitor GSM networks is perhaps the most unusual and interesting aspect of these operations. In today's world, we have become too dependent on mobile phone networks which rely on ancient communication protocols with little or no security available for the end user. Although all GSM networks have mechanisms embedded which allow entities such as law enforcement to track suspects, there are other parties which can gain this ability and further abuse them to launch other types of attacks against mobile users.

Full technical paper with IOCs.

Kaspersky products detect modules from the Regin platform as: Trojan.Win32.Regin.gen and Rootkit.Win32.Regin.

If you detect a Regin infection in your network, contact us at: intelservices@kaspersky.com

Syndicate content